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A multitude of extrinsic environmental factors (referred to in their entirety as the ‘skin
exposome’) impact structure and function of skin and its corresponding cellular
components. The complex (i.e. additive, antagonistic, or synergistic) interactions
between multiple extrinsic (exposome) and intrinsic (biological) factors are important
determinants of skin health outcomes. Here, we review the role of hypochlorous acid
(HOCl) as an emerging component of the skin exposome serving molecular functions as
an innate immune factor, environmental toxicant, and topical chemopreventive agent
targeting solar UV-induced skin cancer. HOCl [and its corresponding anion (OCl-;
hypochlorite)], a weak halogen-based acid and powerful oxidant, serves two seemingly
unrelated molecular roles: (i) as an innate immune factor [acting as a myeloperoxidase
(MPO)-derived microbicidal factor] and (ii) as a chemical disinfectant used in freshwater
processing on a global scale, both in the context of drinking water safety and recreational
freshwater use. Physicochemical properties (including redox potential and photon
absorptivity) determine chemical reactivity of HOCl towards select biochemical targets
[i.e. proteins (e.g. IKK, GRP78, HSA, Keap1/NRF2), lipids, and nucleic acids], essential to
its role in innate immunity, antimicrobial disinfection, and therapeutic anti-inflammatory
use. Recent studies have explored the interaction between solar UV and HOCl-related
environmental co-exposures identifying a heretofore unrecognized photo-
chemopreventive activity of topical HOCl and chlorination stress that blocks
tumorigenic inflammatory progression in UV-induced high-risk SKH-1 mouse skin, a
finding with potential implications for the prevention of human nonmelanoma
skin photocarcinogenesis.

Keywords: hypochlorous acid, chlorination stress, environmental exposure, skin exposome, solar ultraviolet
radiation, inflammation, skin cancer
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INTRODUCTION: ENVIRONMENTAL
EXPOSURE AND SKIN HEALTH: FOCUS
ON SOLAR ULTRAVIOLET RADIATION
AND CO-EXPOSURE TO
ENVIRONMENTAL TOXICANTS

Skin, the largest part of the human integumentary system
constituting about 15% of the total adult body mass, is positioned
at the interface between environment and the body’s internal organs
(1). The skin is a crucial and dynamic barrier against the constantly
changing environment, autonomously maintaining organ-level and
systemic homeostasis. As one of the key barriers of defense against
physical, chemical, and microbial stressors, the skin is a complex
organ functioning in tissue regeneration and wound healing, hydro-
, osmo-, and thermoregulation, endocrine and sensory functions,
biosynthesis, metabolism, innate and adaptive immunity, circadian
rhythmicity, and neuro-psychosocial communication (1–8). Among
various environmental factors relevant to human health, solar
exposure is known to impact tissue homeostasis modulating
many of these cutaneous functions. Indeed, skin barrier
dysfunction is a hallmark of numerous cutaneous pathologies
including allergic reactions, microbial infection, photoaging,
and photocarcinogenesis.

As an outer surface organ, human skin is ubiquitously exposed to
solar ultraviolet (UV) radiation. UV exposure has both positive and
negative effects on human health (9). It is responsible for the
biosynthesis of vitamin D3, can stimulate the production of
photoprotective melanin, and is used therapeutically to treat
inflammatory skin diseases (such as psoriasis, vitiligo, localized
scleroderma, and atopic dermatitis). At the same time, solar UV is
a potent environmental human carcinogen (10–12). The
mechanisms by which solar UV-radiation causes skin
photodamage are wavelength-dependent (11). UVB (290-320 nm)
is thought to cause direct structural damage to DNA in the form of
epidermal cyclobutane pyrimidine dimers (CPDs) and other
photoproducts. Most of the solar UV energy incident on human
skin derives from the deeply penetrating UVA region (≥ 95%, 320-
400 nm) not directly absorbed by DNA, and UVA-induced
photodamage occurs by oxidative mechanisms mediated by
reactive oxygen species (ROS). Contributing to the adverse effects
of solar UV exposure is its known action as a systemic
immunosuppressant, compromising an individual’s immune
responsewithmechanistic implications forphotocarcinogenesis (13).

UV and other environmental toxicants can be conceptualized as
components of the overall skin exposome (Figure 1), a term
integrating all environmental cutaneous exposures and
consequent biological effects including antagonism and
potentiation that may result from co-exposures (14): (i) physical
Abbreviations: HOCl, Hypochlorous acid; UV, Ultraviolet; CPDs, Cyclobutane
pyrimidine dimers; ROS, Reactive oxygen species; SABV, Sex as a biological
variable; MPO, Myeloperoxidase; CBPs, Chlorination byproducts; CSAD,
Cysteine sulfinic acid decarboxylase; CDO1, Cysteine dioxygenase; FIFRA,
Federal Insecticide, Fungicide, and Rodenticide Act; DBP, Disinfection
byproducts; PPCPs, Pharmaceuticals and personal care products; AHR, Airway
hyperresponsiveness; GI, Gastrointestinal.
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(such as thermal and mechanical trauma), (ii) chemical/xenobiotic
[such as industrial pollutants, topical and systemic drugs,
disinfectants, pharmaceuticals and personal care products
(PPCPs)], (iii) microbiomic (originating from commensal and
pathogenic microbes), (iv) allergenic (either of chemical or
biological nature), and (v) life style-associated (such as tobacco
product use, dietary choices, circadian rhythmicity, sleep pattern
etc.) factors. Importantly, the complete skin exposome is subject to
cross-talk with intrinsic factors (i.e. an individual’s primary
biological determinants of skin structure and function) including:
(i) genetics (as associated with ethnicity, sex as a biological variable
(SABV), disease vulnerabilities etc.), (ii) pathobiological occurrences
[such as infections, metabolic dysregulation (including diabetes),
and autoimmune disturbances], and (iii) chronological aging (7,
15–20). Certain aspects and subcategories of the skin exposome
have been expertly reviewed including the skin microbiome and the
skin redoxome (7, 8).

Molecular crosstalk and mechanistic overlap between various
components of the extrinsic skin exposome is well substantiated at
the molecular level. For example, potentiation of solar UV-induced
cutaneous and systemic injury by co-exposure to other
environmental toxicants/pollutants has attracted much attention
due to its negative impact on public health worldwide. Indeed,
common environmental toxicants such as heavy metals (e.g.
cadmium), metalloids (e.g. arsenic), and organic xenobiotics (e.g.
benzo[a]pyrene, TCDD) are established potentiators of solar UV
damage and skin carcinogenesis (21–23). Co-carcinogenicity of
various exposome factors potentiating solar UV-induced skin
photocarcinogenicity is firmly documented, as applicable to: (i)
pollutants such as polyaromatic hydrocarbons including benz[a]
pyrene (from cigarette smoke and combustion engines), (ii) arsenic
(from drinking water), (iii) hypercaloric dietary intake/metabolic
dysregulation, (iv) molecular therapeutics [acting as photo
sensitizers or immunosuppressants], (v) and microbial infection
(HPV, Merkel cell polyoma virus, Malassezia spp.) (21–28). To the
contrary, dietary intake of specific phytochemicals representing an
extrinsic exposome-related factor might enhance skin barrier
function and antagonize photo-carcinogenesis, acting through
modulation of specific molecular pathways associated with
enhancement of antioxidant stress response (with involvement of
the Keap1/NRF2 pathway) and suppression of inflammatory
signaling (NFkB and AP-1) (9, 29).

Likewise, impairment of skin barrier function and health can
result from the overlap of extrinsic (exposome-related) and intrinsic
factors that interact and potentially synergize in complex ways. For
example, it is well documented that smoking (an external
exposomal factor) accelerates skin aging (intrinsic factor) (30).
Likewise, human skin photoaging represents the overlap of
intrinsic factors (such as cellular senescence as a function of
chronological age) and structural/functional alterations due to
environmental solar exposure (31). In the context of co-
carcinogenicity, it has long been known that intrinsic genetic
alterations that impair DNA repair capacity are associated with
an increased UV-induced skin cancer incidence as substantiated
paradigmatically by xeroderma pigmentosum patients with excision
repair deficiencies underlying a pronounced increase in skin cancer
risk (32, 33).
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Recently, hypochlorous acid (HOCl) has been identified as an
environmental toxicant relevant to cutaneous exposures (34–36).
Here, given the ubiquitous use of topical HOCl-based
disinfection strategies combined with its established biological
role as an essential determinant of neutrophil-related innate
immunity, we review the role of this powerful electrophile as
an understudied chemical component of the skin exposome with
special emphasis on novel data that substantiate HOCl-
dependent modulation of solar UV-induced skin carcinogenesis.

HYPOCHLOROUS ACID AND ITS
CONJUGATED ANION: INNATE AND
ENVIRONMENTAL MEDIATORS OF
OXIDANT CHLORINATION STRESS

HOCl in Innate Immunity
Basic physicochemical properties of HOCl are relevant to its
endogenous physiological function including its role as an innate
Frontiers in Oncology | www.frontiersin.org 3
immune factor, topical antimicrobial, and environmental
toxicant (Figure 2) (37, 38).

Importantly, multiple chemical parameters dictate the
biological function of HOCl serving as an important
component of the skin exposome. In this context it should also
be mentioned that HOCl-dependent chlorination stress is
dictated by both thermodynamic and kinetic parameters that
ultimately determine susceptibility of various biochemical targets
(39–43).

First, HOCl is (i) a weak acid, (ii) a powerful chlorination
agent, and (iii) direct- or indirect-acting oxidant. HOCl contains
one labile proton (pKa = 7.46) dictating the co-existence between
acid and conjugated base under physiological conditions at near
equimolar ratio (Figure 2A). Another important physico-
chemical feature of HOCl and its corresponding anion [OCl-

(hypochlorite)], relevant to environmental co-exposure
scenarios, is its ability to absorb solar UVB (290-320 nm)
photons and, as a consequence, undergo photolysis
(Figure 2B). HOCl maximally absorbs at 237 nm and 289 nm
FIGURE 1 | The Skin Exposome. A multitude of extrinsic environmental factors (referred to in their entirety as the ‘skin exposome’) impact structure and function of
skin and its corresponding cellular components. The complex (i.e. additive, antagonistic, or synergistic) interactions between multiple extrinsic (exposome) and intrinsic
(biological) factors are important determinants of skin health outcomes. Unfolding skin pathology can potentiate (+) the cutaneous vulnerability to further environmental
exposures or intrinsic factors (fueling a positive feedback loop). (PPCP, pharmaceuticals and personal care products; SABV, sex as a biological variable). Image was
created using free imaging software: smart.servier.com.
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with molar extinction coefficients of 102 and 36.1, respectively;
OCl- maximally absorbs at 292 nm with a molar extinction
coefficient of 378. Consequently, photolysis of HOCl by
environmentally relevant UVB is a function of pH. Indeed,
environmental UV exposure might cause photolysis reactions
with formation of various reactive species including the hydroxyl
and chlorine free radicals, among others. However, the specific
role of photolysis in the mediation of biological HOCl-based
chlorination stress remains to be explored, given the opposing
effects of a short reactivity-limited lifetime and sustained HOCl-
release from photostable organic precursors including
chloramines (such as the swimming pool disinfectant
trichloroisocyanuric acid; see Figure 5A, structure 5) (44, 45).

Remarkably, HOCl, a weak halogen-based acid and powerful
oxidant, serves two seemingly unrelated molecular roles: (i) as an
innate immune factor [acting as a myeloperoxidase (MPO)-
derived microbicidal factor] and (ii) as a chemical disinfectant
used in freshwater processing, both in the context of drinking
water safety and recreational use (e.g. swimming pool/hot tub
disinfection) (37, 38). Importantly, HOCl and its conjugated base
Frontiers in Oncology | www.frontiersin.org 4
represent a potent oxidizing redox system [E0’ = +0.9 (OCl-); E0’ =
+1.48 V (HOCl)] under physiological conditions. In this context, it
is important to notice that the major anti-microbially active
species is thought to be HOCl (compared to the hypochlorite
anion), consistent with the half-cell oxidation-reduction potentials
and an increased ability of the uncharged HOCl species to
penetrate cell walls and membranes of pathogens. Involvement
of MPO in antimicrobial response and host pathogen interaction
have been covered elsewhere and will not be the topic of this
review (46). The potent oxidant HOCl/OCl− serves as an
endogenous microbicidal agent, generated by myeloid lineage-
derived effector cells (including neutrophils). Indeed, during the
respiratory burst, MPO-dependent oxidation of chloride anions
(using NADPH oxidase-derived superoxide/hydrogen peroxide)
produces HOCl and other hypohalous acids such as HOBr
(hypobromous acid), HOI (hypoiodous acid), and HOSCN
(hypothiocyanous acid)] as an essential component of
antimicrobial innate immunity (Figure 2C) (47, 48). The
‘chlorination cycle’ catalyzed by MPO involves the hydrogen
peroxide-dependent oxidation of reactive site ferric iron [Fe
A

C

B

FIGURE 2 | HOCl/OCl-: Physicochemical Properties, Innate and Environmental Origin, and Formation of HOCl-Derived Secondary Oxidants Under Physiological
Conditions (A) pH-dependent speciation (HOCl versus OCl-). At physiological pH, HOCl and OCl- occur at near equimolar ratios (B) Photon Absorptivity. HOCl and
its corresponding anion differ with regard to photo-absorptive properties: HOCl (lmax = 235 nm; є = 101); OCl- (lmax = 292 nm; є = 365). OCl- absorptivity covers the
solar UVB (290-320 nm) and UVA-II (320-340 nm) regions. (C) Biological and environmental sources of HOCl formation and HOCl-derived secondary oxidants. Left
panel: Innate immune activation causes HOCl production by specific myeloid cells under conditions of inflammation and respiratory burst via the myeloperoxidase
(MPO)-catalyzed chlorination cycle that consumes H2O2 for Cl- oxidation. Environmental exposure to HOCl occurs in the context of freshwater disinfection (e.g.
drinking water, recreational use, etc.) and topical antimicrobial intervention. Right panel: HOCl-derived secondary oxidants. Apart from acting as potent oxidizing
species, HOCl/OCl- may be involved in a number of biochemically relevant reactions producing secondary oxidants including: (a) chloramine formation; (b) hydroxyl
radical formation downstream of (i) Fe(II)-dependent Fenton or (ii) superoxide chemistry; (c) singlet oxygen formation downstream of (i) peroxide or (ii) superoxide
chemistry; (d) molecular chlorine formation with involvement of Cl- at low pH; (e) formation of nitryl chloride and chlorine nitrite upon reaction with nitrite; and (f)
formation of hydroxyl and chlorine radicals as a result of UV-driven photolysis.
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(III)] forming a highly reactive oxy-ferryl [Fe(IV)=O] radical
cation capable of oxidizing chloride anions leading to the
formation of HOCl and regeneration of the ferric iron MPO.
Importantly, endogenous hypohalous acids, even though serving
innate host defense functions, may also induce tissue damage at
sites of inflammation, an area of active research in the context of
neurodegenerative disease (M. Alzheimer; M. Parkinson),
metabolic and cardiovascular dysfunction (atherosclerosis;
diabetes), autoimmune dysregulation, cancer, and chronological
aging, among others (47, 49, 50). Importantly, beyond a role in
cutaneous innate immunity, the MPO system has also been
involved in various skin pathologies, either serving as a causative
factor or biomarker in inflammation, contact hypersensitivity and
irritation, psoriasis, UV-damage, photoaging, and carcinogenesis
(51–59).

HOCl in Freshwater Disinfection: From
Human Consumption to Recreational Use
The disinfection of drinking water supply by HOCl-dependent
chlorination may well be regarded as the most important public
health milestone in human history. Among the sustainable
development goals adopted by members of the United Nations
in 2015 is goal 6, which aims to provide all people with equal
access to safe and affordable drinking water, sanitation and
hygiene as consistent with the 2010 proclamation of the
general assembly that such encompasses a human right.
Despite substantial progress, it is currently estimated that more
than 2 billion people lack access to safely managed drinking
water and basic hygiene, while nearly half of the human
population lacks sanitation. Indeed, according to global
population projections and climate change models, supply
problems surrounding safe water will be of utmost importance
for this century. Considering these trends, continual
optimization of the methods for drinking water sanitation,
distribution, safe storage and wastewater treatment will be
necessary to reduce water related health disparities on a global
scale (60).

HOCl-Based Swimming Pool
Disinfectants: Oxidative Potentiators of
Cutaneous Solar UV Damage as an
Unexplored Environmental Exposure of
Global Importance
HOCl is the active microbicidal principle released by standard
swimming pool disinfectants employed abundantly worldwide.
According to CDC, there are 10.4 million residential and 309,000
public swimming pools and over 7.3 million hot tubs in the
United States alone (https://www.cdc.gov/healthywater/
swimming/fast-facts.html). Even though HOCl, commonly
referred to as ‘swimming pool chlorine’, is the most frequently
used halogen-based oxidizing pool disinfectant, little research
has addressed toxicological implications and damage
potentiation resulting from combined exposure to HOCl-based
swimming pool disinfectants and solar UV as it occurs on a
global scale in the context of recreational swimming pool use
Frontiers in Oncology | www.frontiersin.org 5
(34). Pool disinfection is an essential barrier to the spread of
germs. To ensure a non-infectious healthy pool environment,
operators try to maintain a desired range (1.0-1.5 ppm free
HOCl; for outdoor swimming pools and indoor pools smaller
than 20 m2, the recommended maximum level is 5 ppm). In
recent years, use of sodium dichloroisocyanurate, an organic
HOCl-precursor, has gained frequent use, but HOCl/OCl- is the
predominantly active microbicidal agent (34, 61).

Human skin is extensively exposed to HOCl-based pool
disinfectants causing oxidation and chlorination of specific
molecular targets; however, little molecular research exploring
the potentially adverse cutaneous and systemic effects resulting
from exposure to HOCl-disinfectants during recreational
swimming pool use has been conducted. Given the important
role of photo-oxidative mechanisms underlying adverse
cutaneous effects of solar UV exposure and the largely
oxidative nature of chlorination-induced damage, it seems
reasonable to expect synergistic molecular interactions that
drive HOCl-potentiation of sun damage in exposed
individuals. Indeed, according to the recent WHO Guidelines
for Safe Recreational Water Environments, epidemiological
evidence indicates that risk of sunburn and cutaneous
photodamage is increased in swimming pool environments.

In addition to direct target chlorination and oxidation, HOCl-
dependent reactions of biological relevance in inflammation and
antimicrobial defense (-also observed in the context of topical
disinfectant use-), might be mediated through the formation of
numerous HOCl-derived electrophilic species (Figure 2C; right
portion). Chloramine formation involves the HOCl-dependent
derivatization of primary and secondary biological amines as
contained in small biochemicals (such as histamine and taurine)
and macromolecules (proteins etc.) (62–64). Moreover, hydroxyl
radical formation may occur downstream of either Fe(II)-
dependent Fenton chemistry, scenarios observable under
conditions of MPO-facilitated heme degradation as a
consequence of excess HOCl formation or pathological elevation
of labile iron (65–67). Likewise, hydroxyl radicals can form upon
reaction of HOCl with superoxide free radicals (68). Interestingly,
HOCl-dependent formation of highly reactive photoexcited
molecular oxygen [1O2 (singlet oxygen)] has been documented
without mechanistic involvement of photons downstream of
peroxide (including linoleic acid hydroperoxide), superoxide, or
chloramine chemistry involving the chemical formation of photo-
excited states (commonly referred to as ‘chemiexcitation’) (69–71).
Molecular chlorine (Cl2) is another species formed downstream of
MPO-dependent transformation of Cl- anions and hydrogen
peroxide at low pH, relevant to cholesterol chlorination in
atherosclerotic pathology (72–74). Furthermore, upon reaction
with nitrite, formation of nitryl chloride and chlorine nitrite might
occur, reactions relevant to inflammatory protein nitration (75).
Lastly, as a result of UV-driven photolysis generation of hydroxyl
and chlorine radicals has been documented, a reaction of potential
relevance to environmental co-exposure scenarios where solar
photons in the UVB range might cause HOCl/OCl- degradation
with formation of reactive free radical species consistent with the
extensive UVB absorptivity of OCl- (38).
April 2022 | Volume 12 | Article 887220
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BIOMOLECULAR TARGETS OF
CHLORINATION STRESS: FROM
CHEMICAL MODIFICATION TO
PATHOPHYSIOLOGICAL
CONSEQUENCES

Chlorination stress that occurs under physiological or
environmental exposure-relevant conditions impacts structure
and function of numerous classes of biomolecules, either through
covalent introduction of chlorine (and chlorine-derived
substituents) or through indirect oxidative insult. HOCl, in
equilibrium at physiological pH with its anionic form
[hypochlorite (OCl−)], may also induce tissue damage at sites
of inflammation involving the oxidation and chlorination of
biomolecules targeting peptides (e.g. glutathione), proteins,
lipids, and nucleic acids (39, 42, 43, 47, 76, 77).

Previous research has identified key molecular modifications
downstream of chlorination stress targeting amino acids,
peptides, and proteins as dominant targets of biologically-
relevant chlorination stress (Figure 3A). For illustration, a
hypothetical heptapeptide [H2N-Tyr-Trp-His-Lys-Met-Cys-
Arg-COOH] has been envisioned that exemplifies the range of
possible amino acid modifications induced by HOCl exposure
including dichloro-tyrosine, hydroxy-tryptophan, histidine
chloramine, lysine mono- or dichloramine, methionine
sulfoxide, cysteine sulfenic/sulfinic/sulfonic acid, and arginine
chloramine (78). Protein chlorination has been associated with
structural changes of target proteins including fragmentation,
crosslinking, aggregation, unfolding, and modulation of specific
functions such as immunogenicity, enzymatic activity and
ligand-receptor interaction (48, 79). Numerous proteins are
subject to chlorination stress-induced modulation through
chemical changes under physiological conditions, including
plasma proteins [e.g. HSA, alpha2M], histones, heat shock/ER
stress response mediators and calcium signaling components
(e.g. GRP78, SERCA), inflammatory signaling molecules (e.g. IL-
6, IKK) and mediators of tissue remodeling (e.g. MMP7, TIMP-
1), causing effects that are mostly consistent with modulation,
attenuation, and resolution of inflammatory tissue responses (35,
80–89). Specifically, inactivation of IKK (inhibitor of IkB kinase)
through oxidation (Cys114/115) is thought to cause the
hypochlorite-dependent attenuation of psoriasis observable
upon topical application (35). Similarly, GRP78 (glucose-
regulated protein 78, HSPA5) modification through
chloramine adduction (Lys 353) has been suggested to
modulate autophagy and apoptosis in A549 lung cancer cells,
and N-chlorination of HSA (human serum albumin) converts
plasma proteins into efficient activators of the phagocytic
respiratory burst (46, 86). In addition, biogenic amines, mostly
through chloramine formation, have been demonstrated to serve
as biomolecular targets of chlorination stress including
histamine, serotonin, melatonin, and taurine among others
(90, 91).

Consistent with chlorination-associated electrophilic stress,
unsaturated lipids serve as major HOCl-targets under
physiological conditions (Figure 3B) (92–99). Indeed, free fatty
Frontiers in Oncology | www.frontiersin.org 6
acids, triglycerides, phospholipids, as well as cholesterol and its
derivatives, have all been validated as being susceptible to
chemical modification under conditions of physiological or
environmental chlorination stress conditions (Figure 3B). For
example, HOCl-mediated modification of cholesterol forms a
number of cholesterol-chlorohydrin stereoisomers as depicted;
in addition, phospholipids may undergo derivatization at
nitrogen-containing head groups (forming the respective
chloramine) or at sites of unsaturation, followed by further
oxidation/decarboxylation and N-centered free radical
formation. In addition, other biochemical lipid mediators
including plasmalogens, prostaglandins, and leucotrienes,
involved in tissue remodeling and inflammatory signaling,
have been shown to be subject to HOCl-dependent adduction
with consequent alteration of signaling properties (98).

Nucleic acids are important targets of chlorination stress with
possible mutagenic, genotoxic, and cytotoxic outcomes downstream
of chemical modification (Figure 3C) (39, 100–102). Specifically, it
is well documented that HOCl exposure causes chemical
modification of DNA and RNA (and their respective nucleotides,
nucleoside, and free nucleobases, irrespective of ribose- or
deoxyribose- substitution). For example, HOCl-modification of
deoxyadenosine forms 8-chlorodeoxyadenosine, and HOCl-
modification of deoxyguanosine forms 8-chlorodeoxyguanosine.
Interestingly, HOCl-modification of deoxycytidine forms a 5-
chlorodeoxycytidine-intermediate, followed by spontaneous
deamination forming stable 5-chlorodeoxyuridine causing
miscoding damage downstream of chlorination stress. Indeed,
chloro-derivatives of nucleic acids and their constitutive bases,
apart from their functional involvement in mutagenic events, may
also play an important yet underappreciated role as biomarkers of
chlorination stress characteristic of specific pathological conditions.
ENDOGENOUS, PHYTOCHEMICAL, AND
SYNTHETIC HOCL-ANTAGONISTS:
ANTIOXIDANTS AND QUENCHERS

Numerous molecular entities of endogenous or phytochemical
origin have been shown to antagonize chlorination stress that
occurs as a consequence of exposure to HOCl including amino
acid derivatives (taurine, glutathione, serotonin, serotonin,
carnosine, ovothiol, ergothioneine), phenolics (gallic acid,
nordihydroguaiaretic acid, quercetin), and B6 vitamers (pyridoxal,
pyridoxine, and pridoxamine), attributed mostly to chemical
reactivity (i.e. sacrificial quenching) (Figure 4A). In addition,
antagonists of MPO enzymatic activity (such as the synthetic
MPO inhibitor verdiperstat or the endogenous metabolite uric
acid) blocking HOCl formation have been explored for
pharmacological control of pathophysiological chlorination stress
(47, 62, 91, 103–109).

Among these biomolecules, B6-vitamers deserve special
recognition since they have been shown to exert protection
against chlorination stress as assessed using in vivo disease
models, an effect attributed to formation of stabilized
chloramine derivatives (110). Likewise, imidazole-derivatives
April 2022 | Volume 12 | Article 887220
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(e.g. L-histidine, carnosine, carcinine) and thio-imidazole-
derivatives (ergothioneine and sea urchin-derived ovothiol)
have been identified as potent chlorination stress inhibitors
(111–113).

Moreover, the cysteine-derived metabolite taurine (2-amino-
ethane-sulfonic acid) has now been identified as a major
endogenous HOCl-directed scavenger and antioxidant,
attenuating physiologically relevant chlorination stress
(Figure 4B). Strikingly, neutrophils represent a large reservoir of
free taurine compromising approximately 50% of the cellular amino
acid/amino acid-derivative pool thought to be involved in direct
chemical protection against cytotoxic consequences of the
respiratory burst associated with microbicidal HOCl formation
(114). Taurine formation occurs as the result of enzyme-catalyzed
cysteine transformation through intermediate generation of L-
cysteine sulfinic acid and hypotaurine (Figure 4B). The
consequent formation of N-chlorotaurine, representing a
Frontiers in Oncology | www.frontiersin.org 7
chlorinated adduct with attenuated reactivity, has also been
interpreted as an intermediate step facilitating the extension of the
phagocytic activity range, enabling enhanced stability and diffusion,
spatially amplifying the range of oxidative antimicrobial effects.
Indeed, attenuated chlorination reactivity of N-Chlorotaurine has
been attributed to sulfonic acid-dependent electrostatic anionic
shielding of the adjacent chloramine function that is amenable to
chloro-transfer if attacked by biomolecular nucleophiles (115).

Importantly, N-chlorotaurine formation may cause the
negative regulation of inflammatory processes by multiple
distinct molecular mechanisms attenuating NF-kB and related
cytokine signaling (88, 116). Interestingly, taurine might not only
attenuate direct chemical reactivity of HOCl through sacrificial
quenching, but chloro-taurine may then act as a redox-directed
signaling modulator of major inflammatory targets and
pathways. Indeed, it has been shown that N-chlorotaurine
modulates inflammatory pathologies attributed to chemical
A

C

B

FIGURE 3 | Biomolecular Targets of Chlorination Stress (A) Amino acids, peptides, and protein targets of chlorination stress. Theoretical heptapeptide [H2N-Tyr-
Trp-His-Lys-Met-Cys-Arg-COOH (1)] illustrating the range of possible amino acid modifications (2) induced by HOCl (from amino- to carboxyterminus): Dichloro-
tyrosine, hydroxy-tryptophan, histidine chloramine, lysine mono- or dichloramine, methionine sulfoxide, cysteine sulfenic/sulfinic/sulfonic acid, arginine chloramine.
(B) Fatty acids, lipids, and lipoproteins as targets of chlorination stress. HOCl-mediated modification of cholesterol (3) forms a number of cholesterol chlorohydrin
stereoisomers: 5,6-dichloro cholesterol (4); (5R,6R)-5-chloro-6-hydroxy cholesterol (5); (5R,6R)-6-chloro-5-hydroxy cholesterol (6); (5S,6S)-6-chloro-5-hydroxy
cholesterol (7), among others. For phospholipids, HOCl may either exert its effects near the head group, or at sites of unsaturation: HOCl-mediated modification of
phosphatidylserine (6) results in phosphatidylserine chloramine (7), with further oxidation/decarboxylation to phosphatidyl glycoaldehyde (8). HOCl-mediated
modification of phosphatidylethanolamine (9) results in the respective dichloramine (10) subsequently forming N-centered radicals acting as long-lived mediators. For
simplicity, for both phospholipids each lipid moiety is stearate. Fatty acids possessing greater degrees of unsaturation are more prone to modification by HOCl:
HOCl-mediated modification of arachidonic acid (12) results in the formation of arachidonic acid chlorhydrins such as 8,14-dichloro-9,15 dihydroxy arachidonic acid
bis-chlorohydrin (13). (C) Nucleic acids as targets of chlorination stress. HOCl may modify DNA, RNA, and free nucleobases. (For simplicity, only HOCl-mediated
modification of deoxyribosides is shown.) HOCl-modification of deoxyadenosine (14) forms 8-chlorodeoxyadenosine (15). HOCl-modification of deoxyguanosine (16)
forms 8-chlorodeoxyguanosine (17). HOCl-modification of deoxycytidine (18) forms 5-chlorodeoxycytidine (19), followed by spontaneous deamination forming 5-
chlorodeoxyuridine (20).
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modification of inflammatory factors, such as IL-6 and NFkB.
Indeed, N-chlorotaurine exposure of IL-6 causes oxidation of
residues relevant to IL6R receptor-binding (Met161 and Trp157)
(88). Negative modulation of NF-kB by N-chlorotaurine (and
other chloramines such as glycine chloramine) is thought to
originate from oxidation of Met45 in IkB (preventing its
ubiquitination and proteasomal degradation) (116, 117).
Importantly, NRF2, the master transcriptional regulator of
cellular antioxidant responses, has also been shown to be
responsive to N-chlorotaurine-mediated chlorination stress, an
effect attributed to electrophilic adduction and inactivation of
Keap-1, the redox-sensitive negative regulator of this
transcription factor (118).
MOLECULAR MEDIATORS, SIGNALING
PATHWAYS, AND HUMAN TARGET
ORGANS OF CHLORINATION STRESS

Molecular chlorination stress relevant to human health originates
fromHOCl (among other endogenous hypohalous acids including
HOI andHOBr, formedmostly in the context of innate immunity)
and is complemented by exposure to HOCl (and related
Frontiers in Oncology | www.frontiersin.org 8
derivatives) originating from exogenous sources. Specifically,
environmental exposure-relevant chlorination agents include
hypochlorous acid (and its corresponding anion) as well as
diverse chloramines (e.g. monochloramine, dichloramine,
nitrogen trichloride, chlorinated isocyanuric acid-derivatives)
formed as a result of freshwater chlorination (Figure 5A) (119,
120). Interestingly, trichloroisocyanuric acid as well as its di-
chloro-analogue are EPA-approved under FIFRA (Federal
Insecticide, Fungicide, and Rodenticide Act) regulations, used
globally for drinking water and freshwater disinfection (such as
in swimming pools), offering increased photostability and
sustained HOCl release (44, 121). Importantly, chlorination
byproducts (CBPs) including organohaloacetic acids and
trihalomethanes (formed due to the presence of dissolved
organic matter) and chlorite are subject to strict EPA regulation
due to potential adverse health effects (122, 123). Strikingly, out of
more than six hundred halogenation byproducts identified as of to
date, only eleven are currently subject to strict EPA regulation
(124). For example, mutagen X (3-chloro-4-(dichloromethyl)-5-
hydroxy-5H-furan-2-one) is a disinfection byproduct derived
from humic acids, not regulated by EPA, with suspected
involvement in cancer risk elevation associated with
consumption of chlorinated drinking water, an effect attributed
to genotoxicity surpassing that of currently regulated CBPs
A

B

FIGURE 4 | Biochemical, Natural Product, and Synthetic Hocl Scavengers and MPO Antagonists. (A) Endogenous chemical entities: 1. Taurine, 2. Glutathione,
vitamins: 3. Vitamin B6, 4. Pyridoxamine; neurotransmitters: 6. Serotonin, 7. Melatonin 8. Carnosine; 9. Ergothioneine. Natural products: 10. Ovothiol, 11. Gallic acid,
12. Nordihydroguaiaretic acid, 13. Quercetin. Endogenous and synthetic MPO antagonists: 5. Uric acid, 7. Melatonin, 14. AZD3241 (Verdiperstat). (B) Endogenous
production of taurine as a possible sink for HOCl. First, L-cysteine is oxidized by cysteine dioxygenase (CDO1) to form L-cysteine sulfinic acid, which in turn is
decarboxylated by the enzyme cysteine sulfinic acid decarboxylase (CSAD) forming hypotaurine. Hypotaurine may undergo spontaneous oxidation to form taurine,
acting as a sacrificial quencher of HOCl/OCl- forming taurine chloramine as a moderately active chloramine with attenuated chlorination reactivity. Interestingly, taurine
chloramine has been demonstrated to exert control over downstream signaling pathways including downregulation of NFkB, and upregulation of KEAP1-NRF2. As
such, it has been hypothesized that taurine chloramine acts through posttranslational modification of distinct amino acid residues on transcription factors, among
other effects.
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(including chloroform and bromodichloromethane) (125).
Additionally, PPCPs introduced into the water supply are
subject to HOCl-mediated chlorination and subsequent
formation of CBPs. For example, common drugs including
metformin, diclofenac, and tamoxifen entering freshwater
sources are subject to direct chlorination causing drinking water
contamination associated with largely unexplored implications for
human health (126–129). Likewise, chlorination of PPCPs
including sunscreen ingredients such as the common UVA-
sunscreen avobenzone are associated with formation of a
dichloro-species, and cosmetics are equally subject to
chlorination with unexplored effects on human health (16,
130–135).

Human Target Organs of Environmental
Chlorination Stress
Importantly, human organ dysfunction may occur as a result of
chlorination stress originating from exogenous (environmental)
and endogenous (innate) sources (47, 49). Indeed, these
pathophysiological outcomes have been attributed to the
molecular consequences of chlorination stress (mediated
through HOCl/OCl- and HOCl-derived organic chloramines)
impacting genotoxic, proteotoxic, inflammatory, and redox
stress responses involving modulation of crucial transcription
factor systems including p53, Keap1/NRF2, HSF1, IKK/NFkB,
and AP-1 (Figure 5B) (35, 36, 118, 136–138). Likewise, signaling
cascades including MAPKs (p38, ERK1/2) are sensitive to HOCl
exposure attributed in part to tyrosine phosphatase modulation
through cysteine-oxidation (139, 140). Also, in the context of
balancing HOCl-related organ toxicity and therapeutic effects, it
should be mentioned that the indiscriminate HOCl-dependent
induction of chlorination stress might be associated with adverse
irritant effects (51, 141–144).

Here, we will briefly focus on organ-specific toxicity of
environmental exposure-induced chlorination stress
(Figure 5C). In the lung, exposure to chlorination stressors has
long been associated with a role in chronic inflammatory diseases
of the respiratory system (137, 144–148). For example,
competitive swimmers have been shown to suffer from high
rates of asthma and airway hyperresponsiveness attributed to
HOCl and volative DBP exposure (149, 150). In the context of
pulmonary exposure, it is noteworthy that inhalational HOCl
formulations are now undergoing clinical trials for prophylaxis
and treatment of COVID-related respiratory infectious illness
(ClinicalTrials.gov Identifier: NCT04684550). Moreover, there
are concerns that innate or environmental chlorination stress
might be related to the occurrence of lung malignancy related to
genotoxic effects (86, 151, 152). Likewise, in the gastrointestinal
tract, chlorination-associated changes have been substantiated,
potentially impacting microbiome and barrier function,
occurrence and severity of inflammatory pathology, and
malignant progression (153–157). Hepatic toxicity related to
chlorination stress, particularly in the context of environmental
exposure to chlorination byproducts, has been documented
extensively. Hepatic metabolism, biotransformation of drugs
and xenobiotics have been investigated, and liver injury as well
Frontiers in Oncology | www.frontiersin.org 9
as malignancy have been substantiated as pathological outcomes
resulting from chronic and dysregulated chlorination stress that
might be potentiated by synergistic co-exposure involving
multiple chlorinated chemical entities (158–161). Nephrotoxity
and urogenital tract dysfunction are established pathological
outcomes of chlorination stress. Among other pathologies,
acute kidney injury, glomerulonephritis, diabetic nephropathy,
and bladder cancer have been associated with exposure to
pathological chlorination stress (110, 162–166).

Potential Therapeutic and
Chemopreventive Opportunities of Topical
HOCl With a Focus on Solar UV-Induced
Skin Carcinogenesis
Remarkably, in addition to endogenous and environmental
sources, skin HOCl exposure also occurs through application
of topical disinfectants employed worldwide as clinical and
consumer products (167–171). In human skin (as a function of
concentration, pH, and exposure time), irritation and disruption
of barrier function, alteration of the commensal microbiome,
allergy, and contact hypersensitivity are expected outcomes of
inappropriate topical HOCl product use not compliant with
standard of care (Figure 5D) (142, 143). Also, it has been
hypothesized that DBPs in drinking water correlate with risk
of skin cancer (172). Importantly, HOCl-based therapeutics
optimized for topical del ivery are now serving as
pharmaceutical formulations for wound management, scar
prevention, diabetic ulcers, atopic dermatitis, pruritus,
psoriasis, and seborrheic dermatitis (84, 168, 173, 174).
Suppression of inflammatory gene expression with
downregulation of iNOS and COX-2 downstream of HOCl-
dependent IKK inactivation represents the crucial mechanistic
basis underlying HOCl-dependent therapeutic efficacy targeting
psoriasis and radiation dermatitis (35). The same mechanism has
also been substantiated attenuating experimental melanoma
progression as a result of myeloid cell-derived HOCl (175). In
addit ion, HOCl-hydrogel formulations have shown
immunotherapeutic efficacy against experimental murine
melanoma (176). Consistent with these observations, a
suppressive role of HOCl in the control of cancer cell viability
and tumor progression has been envisioned and further
substantiated (71, 177, 178).

More recently, we have investigated the molecular
consequences of solar simulated ultraviolet (UV) radiation and
HOCl combinations, a procedure mimicking co-exposure
experienced for example by recreational swimmers exposed to
both HOCl (pool disinfectant) and UV (solar radiation). First, we
have profiled the HOCl-induced stress response in reconstructed
human epidermis and SKH-1 hairless mouse skin (36). In AP-1
transgenic SKH-1 luciferase-reporter mice, topical HOCl
suppressed UV-induced inflammatory signaling assessed by
bioluminescent imaging and gene expression analysis
documenting HOCl-antagonism of solar UV-induced AP-1
activation. Co-exposure studies (combining topical HOCl and
UV) performed in SKH-1 hairless mouse skin revealed that the
HOCl-induced cutaneous stress response blocks redox and
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inflammatory gene expression elicited by subsequent acute solar
UV exposure. Remarkably, in the SKH-1 high-risk mouse model
of UV-induced human keratinocytic skin cancer, relevant to
actinic keratosis and subsequent malignant progression, topical
HOCl blocked tumorigenic progression and inflammatory gene
expression (Ptgs2, Il19, Tlr4), confirmed by immunohistochemical
analysis including 3-chloro-tyrosine-epitopes.

These data illuminate the molecular consequences of HOCl-
exposure in cutaneous organotypic and murine models assessing
inflammatory gene expression and modulation of UV-induced
carcinogenesis. However, the specific mechanistic involvement of
NFkB and AP-1 in the HOCl-induced attenuation of UV-induced
skin inflammatory gene expression and carcinogenesis remains to
be elucidated. With relevance to cancer-directed preventive and
Frontiers in Oncology | www.frontiersin.org 10
potentially therapeutic activity, an HOCl-induced increased
immunogenicity of proteins and enhanced uptake by dendritic
cells have been observed (179). Likewise, activity as a natural
adjuvant (through induction of adaptive immunity by HOCl-
dependent oxidation of N-linked carbohydrates in glycoprotein),
subsequently enhancing scavenger receptor uptake by antigen
presenting cells, has been demonstrated, linking HOCl-
potentiation of innate and adaptive immunity (180).

If translatable to photodamaged human skin, these
observations provide novel insights on molecular consequences
of chlorination stress not only relevant to environmental
exposure but indicative of a potential photo-chemopreventive
utility for topical intervention targeting early (actinic keratosis)
and advanced stages of nonmelanoma skin cancer.
A

B

C

D

FIGURE 5 | Chlorination Stress: Molecular Inducers, Signaling Pathways, Human Target Organs and Therapeutic Opportunities In Skin. (A) Direct and indirect
chlorination stress inducers. 1. Hypochlorous acid, 2. Monochloramine, 3. Dichloramine, 4. Nitrogen Trichloride, 5. Trichloroisocyanuric acid. Upon chlorination of
fresh water, chlorination byproducts (CBPs) are formed due to the presence of dissolved organic matter: Haloacetic acids: 6. Chloroacetic acid, 7. Dichloroacetic
acid, 8. Trichloroacetic acid; Trihalomethanes: 9. Trichloromethane, 10. Bromodichloromethane, 11. Chlorodibromomethane, 12. Chlorite, all of which are subject to
governmental regulation. Remarkably, numerous major chlorinated byproducts remain largely unexplored (and unregulated) such 3-chloro-4-(dichloromethyl)-5-
hydroxy-5H-furan-2-one (13, commonly referred to as ‘mutagen X’). Additionally, pharmaceuticals and personal care products (PPCPs) introduced into the water
supply are subject to HOCl mediated chlorination. As shown, the common UVA-sunscreen avobenzone (14) is chlorinated to produce a dichloro-species (15).
(B) Chlorination stress signaling pathways. It has been demonstrated that chlorination stress may impact genotoxic, proteotoxic, inflammation and redox responses
including p53, Keap1/NRF2, IKK/NFkB, and AP-1. (C) Human target organs of chlorination stress. Chlorination stress impacts multiple organ systems causing
specific functional outcomes as discussed. (D) HOCl: Therapeutic opportunities in skin. HOCl may be used as a topical agent for therapeutic induction of chlorination
stress in the context of antimicrobial intervention, impaired barrier function, wound healing, pruritus, atopic dermatitis, psoriasis, skin cancer, and prevention of
photocarcinogenesis.
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FUTURE DIRECTIONS

Chlorination stress associated with HOCl/OCl- exposure
originating from innate and environmental sources has now
been identified as a double-edged molecular sword, mediating
essential functions in the context of innate immunity towards
microbial attack and exerting effects that are either detrimental
or therapeutic to human health, particularly in the context of
skin anti-inflammatory and cancer photochemopreventive
topical intervention. Harnessing HOCl-dependent preventive
and therapeutic effects that might benefit human patients will
depend on the development of novel chemical entities and
advanced formulations allowing a more controlled and
targeted modulation of chlorination stress (70, 181). Indeed,
additional research must carefully explore dose regimens and
extended release formulations that achieve anti-inflammatory
and photo-chemopreventive effects while avoiding potential
HOCl-induced tissue damage and irritation. In the same way,
availability of specific biocompatible molecular fluorescent
probes with diagnostic utility in vitro and in vivo (allowing
Frontiers in Oncology | www.frontiersin.org 11
imaging and quantitative analysis of physiological and
therapeutic chlorination stress conditions) will expand our
understanding of these multi-faceted versatile biochemical
actors and processes as key determinants of health and
disease (182).
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