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Abstract 

Electrolyzed water (EW) is gaining popularity as a sanitizer in the food industries 

of many countries. By electrolysis a dilute sodium chloride solution dissociates into 

acidic electrolyzed water (AEW; pH 2 to 3; oxidation-reduction potential (ORP) 

>1100 mV; active chlorine content 10-90 ppm), and basic electrolyzed water (BEW; 

pH 10 to 13; ORP -800 to -900 mV). By the use of AEW, vegetative cells of various 

bacteria in suspension were generally reduced by >6.0 log CFU/ml. However, 

influenced by factors such as surface type and the presence of organic matter, AEW 

is less effective on utensils/surfaces and food products. Reductions (log units) of 

bacteria obtained on surfaces/utensil and vegetables/fruits mainly ranged from 

about 2.0 to 6.0, and 1.0 to 3.5, respectively. Higher reductions were in particular 

obtained for tomatoes. For chicken carcasses, pork, and fish reductions ranged from 

about 0.8 to 3.0, 1.0 to 1.8, and 0.4 to 2.8, respectively. Considerable reductions 

yielded the use of AEW on eggs. On some food commodities, treatment with BEW 

followed by AEW showed stronger activity than treatment with AEW only. The EW 

technology deserves consideration in discussing possibilities for the industrial 

sanitizing of equipments and the decontamination of food products. Nevertheless, 

decontamination treatments for food products should always be seen as a part of an 

integral food safety system. Such treatments cannot replace strict adherence to good 

manufacturing and hygiene practices. 
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Cleaning and sanitizing are important elements of the hygiene measures 

conducted in a food processing plant. Typical sanitizers applied in the food industry 

include chlorine compounds, organic acids, trisodium phosphate, iodophors, and 

quaternary ammonium compounds (QAC). Chlorine compounds are often the most 

effective, although they may be more corrosive and irritating than alternatives such 

as iodine and QAC. Chemical substances are also used for decontamination purposes 

on certain food products. In the United States (US), decontamination treatments with 

antimicrobials have been authorized for carcasses, whereas such treatments are at 

present not permitted in the European Union. Some of these procedures have been 

found not to be acceptable due to chemical residues, high cost, limited effectiveness 

or discoloration of products. 

Currently, the use of electrolyzed water (EW) is gaining popularity as a sanitizer 

in the food industry to reduce or eliminate bacterial populations on food products, 

food-processing surfaces, and non-food contact surfaces. In Japan, the Health, Labor 

and Welfare Ministry has officially approved EW as a food additive (110). Moreover, 

EW generator have also been approved for applications in the food industry by the 

US Environmental Protection Agency (EPA) (87). The purpose of this review is to 

give an overview of issues related to EW, its antimicrobial activity, and its 

application in the food industry (surfaces, process water, various food products). 

 

CONCEPT OF EW 

History. The concept of EW has originally been developed in Russia, where it has 

been used for water decontamination, water regeneration, and disinfection in 

medical institutions (58, 59, 77, 78). Since the eighties, EW has also been used in 

Japan. One of the first applications of EW was the sterilization of medical 

instruments in hospitals (61, 98). Later on it has been utilized in various fields such as 
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agriculture or livestock management (4, 17, 99), but the use of EW was restricted by 

its short shelf life. With recent improvements in technology and the availability of 

better equipment, EW has gained interest as a disinfectant in the food industry.  

Generation. EW is the product of the electrolysis of a dilute sodium chloride 

(NaCl) or KCl/MgCl2 solution in an electrolysis cell, within which a diaphragm 

(septum or membrane) separates the anode and cathode. The basic principle of 

producing EW is shown in Fig. 1. The voltage between the electrodes is generally set 

at 9 to 10 volts (5). During electrolysis, NaCl dissolved in deionized water dissociates 

into negatively charged chlorine (Cl-) and positively charged sodium (Na+). At the 

same time, hydroxide (OH-) and hydrogen (H+) ions are formed. Negatively charged 

ions such as Cl- and OH- move to the anode to give up electrons and become oxygen 

gas (O2), chlorine gas (Cl2), hypochlorite ion (OCl-), hypochlorous acid (HOCl) and 

hydrochloric acid, while positively charged ions such as H+ and Na+ move to the 

cathode to take up electrons and become hydrogen gas (H2) and sodium hydroxide 

(NaOH). The solution dissociates into an acidic solution from the anode (pH 2 to 3; 

oxidation-reduction potential (ORP) >1100 mV; active chlorine content (ACC) 10-90 

ppm), and a basic solution from the cathode (pH 10 to 13; ORP -800 to -900 mV). The 

solution from the anode is called acidic electrolyzed water (AEW), acid oxidizing 

water (AOW), or electrolyzed oxidizing water (EOW), whereas the cathodic solution 

is known as basic electrolyzed water (BEW), alkaline electrolyzed water (AlEW), or 

electrolyzed reducing water (ERW). Neutral electrolyzed water (NEW; pH 7 to 8; 

ORP 750 mV) is produced by mixing the anodic solution with OH- ions or by using a 

single-cell chamber (5, 21, 22, 39, 109). 

Various EW-producing machines are available in the market. Japan is currently 

the principal manufacturer of such machines (5). Generally, machines can be divided 

into those containing a diaphragm producing AEW and BEW (two-cell chamber), 
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and those without a septum producing NEW (single-cell chamber). The physical 

properties and chemical composition of EW varies dependent on concentration of 

NaCl, amperage level, time of electrolysis, or water flow rate (47). Based on their 

control systems, machines allow the users to select (i) birne flow rate, (ii) amperages 

and/or voltages, or (iii) a preset chlorine concentration level. 

General application. AEW exerts strong antimicrobial properties against a 

variety of microorganisms. It may be used in a wide range of application areas such 

as medicine (treatment of wounds, disinfection of medical equipment and surfaces), 

dentistry, agriculture, livestock management, aquaculture or the food industries. 

BEW is mostly used as cleanser and degreaser before treatment with disinfecting 

agents (7, 15, 27, 52, 57). BEW also exerts a strong reducing potential responsible for 

the reduction of free radicals (5). In some applications, pre-treatment with BEW, 

followed by the application of AEW, was more effective than AEW treatment only. 

Pre-treatment with BEW seems to sensitize bacterial cell surfaces to the exposure to a 

disinfecting agent. NEW on the other hand is less frequently used than AEW, but has 

the advantage of being less corrosive and having a longer shelf life (21, 76). Hence, 

NEW may be an alternative to AEW under certain circumstances (22, 39, 109). 

Antimicrobial activity of AEW. Scientists are arguing if pH, chlorine compounds, 

ORP, or combinations of these factors are responsible for the antimicrobial activity of 

AEW. Altogether, the presence of chlorine and a high ORP seem to be the main 

contributors to the antimicrobial activity of AEW (5).  

The low pH of AEW is believed to reduce the bacterial growth and to raise the 

sensitivity of bacterial cells to active chlorine by sensitizing their outer membrane to 

the entry of HOCl (85). The different active chlorine compounds are considered to 

destroy the membranes of microorganisms, but different other modes of chlorine 
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action (e.g. decarboxylation of amino acids, reactions with nucleic acids, unbalanced 

metabolism after the destruction of key enzymes) have also been proposed (47, 53, 

71, 72). Studies suggest that hypochlorous acid (HOCl) is the most active of the 

chlorine compounds (55, 71, 72). HOCl penetrates cell membranes and produces 

hydroxyl radicals acting on the microorganisms. These compounds exert their 

antimicrobial activity through the oxidation of key metabolic systems. The relative 

fractions of chlorine compounds (Cl2, HOCl, and OCl-) are pH-dependant and they 

affect the bactericidal activity of AEW (25, 41, 63, 72, 85). The highest proportion of 

HOCl and maximal efficiency of AEW in inactivating bacteria was found at a pH of 

about 4.0 to 5.0. On the other hand, more Cl2 was present at lower pHs and more 

OCl- at higher pHs. The bactericidal activity of AEW and ORP increase with active 

chlorine concentrations indicating that chlorine is a strong oxidizing agent (85). 

Complete inactivation of Escherichia (E.) coli O157:H7 and Listeria (L.) monocytogenes 

was reported at ACCs of 2 ppm or above, regardless of pH (85).  

By some authors, the high ORP is believed to be the determining factor for the 

antimicrobial activity of AEW (4, 41, 65, 106). Al-Haq et al. (5) reported that 

inactivation of E. coli was primarily dependent on ORP and not on residual chlorine. 

The ORP of a solution is an indicator of its ability to oxidize or reduce, with higher 

ORP values corresponding to greater oxidizing strength. The high ORP of AEW may 

be due to the oxygen released by the rupture of the weak and unstable bond between 

the hydroxy and chloric radicals (5). Moreover, the high ORP probably changes the 

electron flow in the cells. Oxidation due to the high ORP of AEW may damage cell 

membranes, cause the oxidation of sulfhydryl compounds on cell surfaces, and create 

disruption in cell metabolic processes leading to the inactivation of bacterial cells (64, 

65). Basically, the high ORP and low pH of AEW seem to react synergistic with HOCl 
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to inactivate microorganisms (11, 65, 85, 87). On the other hand, complete loss of 

bactericidal activity was observed when ORP decreased to less than 848 mV (99).  

Influence factors on the antimicrobial activity of AEW. A limiting factor for the 

use of AEW is its loss of activity with time due to chlorine loss and ensuing HOCl 

decomposition (53, 62). When stored under open conditions, AEW rapidly looses its 

residual chlorine due to Cl2 evaporation (5). Len et al. (62) observed a total chlorine 

loss within 100 h of storage. Under closed conditions, chlorine loss occurs due to self-

decomposition but it is slower than under open conditions. Chlorine loss by 

decomposition can be enhanced by exposition to diffused light and agitation (62). As 

mentioned, the ratio of Cl2 among chlorine compounds is pH-dependant (63, 85). The 

lower the pH, the more Cl2 exist, which can easily volatilize. Theoretically, almost no 

chlorine loss occurs at a pH of 9 (62). 

Furthermore, temperature, agitation, and the contact with organic compounds 

influence the antimicrobial activity of AEW. At higher temperatures, cell membranes 

of gram-negative bacteria become more fluidal and AEW enters the cells faster (7, 

24). Low storage temperatures seem to stabilize residual chlorine and ORP (24). 

When AEW treatment was combined with agitation, higher reductions were 

observed (87). Probably, cells removed from the surfaces during agitation were 

immediately inactivated by AEW (5, 87). Moreover, agitation might have facilitated 

the penetration of AEW into the remaining cell layers, or the well-mixed AEW 

allowed chlorine to react with cells more efficiently. On the other hand, the presence 

of organic matter reduced ACCs and ORPs rapidly (8, 82). Chlorine compounds react 

with proteins to form organo-chloramines, which exert a much smaller antimicrobial 

activity than free chlorine.  
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Advantages and disadvantages of AEW. AEW is environment friendly since it is 

generated by electrolysis of only water and a dilute salt solution (41, 50, 87). After 

use, AEW reverts to normal water (5, 13). Hence there is no need of handling, storing, 

or transportation of concentrated chemicals, which present a potential health hazard 

(5). Due to its nonselective antimicrobial properties, AEW does not lead to the 

development of resistances (5, 108). The use of AEW on different food commodities 

(e.g. produce and fish) did not negatively affect the organoleptic properties as color, 

scent, flavor, or texture (2, 5, 33, 34, 43, 48, 71). Moreover, many types of EW-

producing machines allow EW to be produced on site and operational costs are low 

since only salt is needed to generate the sanitizer (5, 13). 

Despite the listed advantages, some disadvantages associated with the 

application of AEW must be considered: (i) the initial costs for the purchase of the 

equipment may be high (5); (ii) some machines may form chlorine gas and cause 

discomfort for the operator (3, 4), (iii) AEW might be corrosive, irritating for hands, 

and phytotoxic due to its high ORP or free chlorine (31, 62, 76, 94); and (iv) the 

antimicrobial activity may be reduced by the presence of organic matter or 

inappropriate storage (8, 13, 54, 82, 95). 

 

ANTIMICROBIAL ACTIVITY OF EW AGAINST MICROORGANISMS IN 

SUSPENSION 

The antimicrobial activity of AEW and NEW against various microorganisms is 

shown in Table 1. Generally, reductions of >6.0 log CFU/ml were reported for a 

variety of bacteria. The effectiveness of EW for reducing microorganisms is 

influenced by several factors such as type of EW (AEW, NEW), ACC, exposure time, 

treatment temperature, pH, amperage, or voltage. Because conditions vary among 

the studies, comparison of the results is often hampered. Fenner et al. (28) found 
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marked differences in the sensitivity to AEW between different bacterial species: 

Proteus mirabilis and Staphylococcus (S.) aureus were more sensitive to AEW than 

Mycobacterium avium ssp. avium, Pseudomonas aeruginosa, or Enterococcus faecium.  

To be considered as effective, a sanitizer applied for 0.5 min must reduce 

microbial populations in suspension or in a biofilm at least by five or three orders of 

magnitude, respectively (8, 12, 21, 66, 75, 97, 105). By the use of AEW and NEW 

against suspended vegetative bacterial cells, these demands were met in most 

instances (Table 1). Spores, especially Bacillus spores, required longer exposure times 

than vegetative cells to obtain reductions >5.0 log CFU/ml (40, 108).  

Venkitanarayanan et al. (106) showed that exposure to AEW reduced E. coli 

O157:H7 by >8.0 log CFU/ml within 5 min. At higher temperatures (35°C and 45°C), 

E. coli O157:H7 were inactivated at comparable levels within shorter exposure time. 

Compared with other studies, the relatively high ACC is noteworthy (Table 1). 

Moreover, Venkitanarayanan et al. (106) reported that AEW treatment reduced 

Salmonella Enteritidis from 7.8 log CFU/ml to non-detectable levels within 10 min 

and to less than 1.0 log CFU/ml within 5 min. For Campylobacter jejuni and different 

Vibrio species, already an AEW exposure for a few seconds yielded reductions of >6.5 

log CFU/ml (84, 90). By the use of NEW for 5 min (ACC ranging from 60 to 93 ppm), 

E. coli O157:H7 were reduced from 7.5 log CFU/ml to non-detectable levels and 

Salmonella Enteritidis were reduced by >6.0 log CFU/ml (20, 21). 

Similar to the inactivation of E. coli O157:H7 and Salmonella Enteritidis, 

Venkitanarayanan et al. (106) observed reductions of L. monocytogenes by >7.0 log 

CFU/ml after the application of AEW (Table 1). By the use of AEW with a slightly 

increased ACC, L. monocytogenes were reduced by 9.2 log CFU/ml within a few 

seconds (40), whereas NEW (ACC of 60 ppm) yielded reductions of >7.0 log CFU/ml 

within 5 min (20, 21). 
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S. aureus is involved in a wide variety of infections, and some strains producing 

staphylococcal enterotoxins (SE) are also responsible for food-borne intoxications. 

Park et al. (87) observed reductions of S. aureus by >9.0 log CFU/ml within 0.5 min 

(Table 1). Decreasing ACCs to 10 ppm yielded reductions of only 4.0 log CFU/ml. 

Fenner et al. (28) reported a reduction of S. aureus populations (8.0 log CFU/ml) to 

non-detectable levels within 5 min, whereas Vorobjeva et al. (108) obtained the same 

reductions within 0.5 min. By the use of NEW with increased ACCs, S. aureus were 

also reduced by >7.0 log CFU/ml within 5 min (21). Interestingly, results of Suzuki et 

al. (102) suggested that AEW is able to inactivate the staphylococcal enterotoxin SEA 

by cleaving it into peptid fragments. 

Spores are generally less sensitive than vegetative cells to disinfecting agents 

including AEW (Table 1). To reduce Bacillus cereus spores by 3.5 orders of 

magnitudes, an exposure time of 2 min was required, whereas vegetative cells were 

reduced by 8.0 log CFU/ml within 0.5 min (40). However, by the use of AEW 

containing 43 ppm of active chlorine for 5 min, reductions by more than six orders of 

magnitude were noted for both vegetative cells and spores (108). Otherwise, an 

exposure time of 15 min was required to inactivate an initial count of 1’000 

Aspergillus parasiticus spores by AEW containing 20 to 30 ppm of active chlorine 

(103). Interestingly, the results suggested that AEW might be able to eliminate the 

mutagenicity of aflatoxin AFB1 by the effect of hydroxyl radicals originating from 

HOCl. 

Researchers also confirmed AEW to be effective against blood-borne viruses 

including hepatitis B virus (HBV), hepatitis C virus (HCV), and human 

immunodeficenccy virus (HIV) (46, 74, 93, 104). In view of food-borne viral 

infections, further investigations are required to evaluate the use of AEW in this 

context.  
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ANTIMICROBIAL ACTIVITY OF EW AGAINST MICROORGANISMS ON 

SURFACES AND UTENSILS 

Surfaces and utensils present important sources for direct or indirect 

contamination of food products with pathogenic and spoilage microorganisms. In 

relation to the amount of organic residues present on surfaces, ACCs and the 

antimicrobial activity of AEW is reduced (8, 82). Ayebah et al. (8) recommend the 

sequential treatment with BEW and AEW. BEW may remove food residues and 

makes the adherent bacteria more susceptible to AEW. On the other hand, AEW 

seems to be effective to prevent cross-contamination (37, 38, 43, 57, 87). 

Cutting boards. Venkitanarayanan et al. (107) examined the efficiency of AEW 

with different temperatures and ACCs in inactivating E. coli O157:H7 and L. 

monocytogenes on plastic cutting boards. The highest reductions were obtained for E. 

coli O157:H7 after treatment at 35°C for 20 min, 45°C for 10 min or 55°C for 5 min, 

and for L. monocytogenes at 35°C for 10 min (Table 2). Vibrio parahaemolyticus were 

reduced from 5.8 to less than 1.0 log CFU/cm2 after 1 min of exposure to AEW (18). 

By rinsing plastic cutting boards with NEW, E. coli, S. aureus, Pseudomonas aeruginosa, 

and L. monocytogenes were reduced by about five orders of magnitude (22). 

Wooden cutting boards are considered more difficult to sanitize than plastic 

boards (1, 18). Due to its physical structure, wood is able to absorb moisture and to 

protect bacteria from disinfecting agents. On the other hand, certain wood species 

may contain endogenous antibacterial properties leading to the desiccation of 

bacteria as a result of their hygroscopic characteristics. Rinsing wooden cutting 

boards with NEW for 1 min reduced populations of E. coli, S. aureus, Pseudomonas 

aeruginosa, and L. monocytogenes by less than three orders of magnitude (22). 
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Extending the exposure time to 5 min yielded reductions of about four orders of 

magnitude (Table 2). No significant differences were found between the application 

of AEW and distilled water in inactivating Vibrio parahaemolyticus on bamboo cutting 

boards (18). Bamboo may contain substances that interact with chlorine-based 

compounds and neutralize the antibacterial activity. 

Processing gloves. Liu and Su (68) analyzed the effects of AEW on reusable and 

disposable gloves (natural rubber latex, natural latex, nitrile) and on clean and soil-

containing gloves. L. monocytogenes were completely inactivated on each glove type 

after 5 min of treatment (Table 2). Longer survival of L. monocytogenes was observed 

in the presence of organic matter (Table 3). 

Stainless steel, tiles, glass, vitreous china. On stainless steel, application of AEW 

for 5 min yielded reductions by 1.8 to 3.7 orders of magnitude (Table 2). Populations 

of Vibrio parahaemolyticus were reduced by more than 5.0 log CFU/cm2 within only 

0.5 min (18). In the presence of organic matter (crab meat residues), L. monocytogenes 

were reduced by 2.3 orders of magnitude (Table 3). By the use of NEW for 1 min, E. 

coli O157:H7, L. monocytogenes, Pseudomonas aeruginosa, and S. aureus were reduced by 

more than six orders of magnitude (Table 2). High reductions were also obtained for 

these pathogens on glass (21).  

On tiles, application of AEW for 5 min yielded reductions by 1.8 to 4.2 orders of 

magnitude (Table 2). Populations of Vibrio parahaemolyticus were reduced by more 

than 5.0 log CFU/cm2 within less than 1 min (18). In the presence of organic matter, 

L. monocytogenes were reduced by 1.5 to 2.3 orders of magnitude (Table 3). Results 

from vitreous china were comparable with those from stainless steel, tiles, or glass 

(Table 2). With agitation, Enterobacter aerogenes and S. aureus were reduced to non-

detectable levels (3.0 log CFU/cm2) on vitreous china (87). 
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Biofilms. Biofilms are a structured community of bacterial cells enclosed in a self-

producing polymeric matrix (glycocalyx), which constitutes a protected mode of 

growth on surfaces and allows survival in hostile environments. The higher 

resistance of bacteria in biofilms to sanitizers has been attributed to various factors as 

protection by the matrix, neutralization of the sanitizer, genetic modification of the 

cell wall, and slow uptake of antimicrobial agents (16, 19, 23, 100). Only limited data 

exist on the efficiency of EW in inactivating bacteria in biofilms. 

Kim et al. (42) showed that AEW reduced L. monocytogenes in biofilms on stainless 

steel to non-detectable levels within 5 min (Table 2). The highest inactivation rate 

was reported within the first seconds of treatment. Thus AEW needed longer 

exposure times to reach the cells inside the biofilm. Depending on the treatment time, 

Ayebah et al. (7) reported reductions of L. monocytogenes by 4.3 to 5.2 orders of 

magnitude. The effectiveness of AEW with different chlorine concentrations (47 and 

85 ppm) did thereby not differ significantly. Other studies also suggest the existence 

of a threshold concentration beyond which further increase does not enhance the 

effectiveness (60, 91). The reductions of L. monocytogenes in biofilms obtained in the 

presence of organic matter are shown in Table 3. Moreover, Ayebah et al. (7) 

obtained the highest reductions by sequential BEW and AEW treatment, even in the 

presence of organic matter. The higher efficiency of this sequential treatment was 

also reported by Koseki et al. (55, 57). Probably, BEW destabilized or dissolved the 

glycocalyx and thereby facilitated the penetration of the active AEW components. 

Abattoirs. Bach et al. (9) compared the effectiveness of AEW and a common 

sanitizer (Mikrolene) for the use in abattoirs. After standard pre-cleaning, AEW 

turned out to be more effective in inactivating bacteria in different slaughterhouse 

areas. Within the slaughter of cattle, the contamination risk associated with the hide 

is of special interest. Both saprophytes and pathogens as E. coli O157:H7 might be 
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transferred to the carcasses during dehiding (6, 70, 73, 89). Besides the maintenance 

and optimization of slaughter hygiene practices, decontamination treatments for 

hides have been established (10, 49, 96). Bosilevac et al. (15) used a high-pressure 

spray treatment of BEW (52°C, 10 s, pH 11.2) and AEW (60°C, 10 s, pH 2.4, ACC 70 

ppm) on cattle hides. Comparable to other hide treatments, total microbial counts 

and Enterobacteriaceae were reduced by 3.5 and 4.3 log CFU/100 cm2, respectively. 

However, the effect of this specific treatment was smaller in an earlier study (14). 

 

ANTIMICROBIAL ACTIVITY OF EW AGAINST MICROORGANISMS IN 

PROCESS WATER 

Water washing is widely used for produce and minimally processed vegetables. 

Hence accumulation of microorganisms in the process water must be prevented (29). 

Ongeng et al. (81) investigated the effect of the electrolysis procedure in water used 

for the washing of vegetables. Thereby the antimicrobial activity against Pseudomonas 

fluorescens, Pantoea agglomerans, and Rahnella aquatilis was tested. Industrial process 

water, which showed higher microbial (8.0 log CFU/ml) and organic load than tap 

water, still had a microbial load of >6.0 log CFU/ml after electrolysis with the 

attainable amperage of 0.7 A (ACC of 1.1 ppm). If salt was supplemented (5 ml of 

20% NaCl/10 l), the tested bacteria were reduced by about four orders of magnitude. 

By raising the amperage to 1.3 A, which generated ACCs above 2 ppm, complete 

inactivation was achieved. Moreover, AEW produced with tap water had a stronger 

antimicrobial activity than AEW produced with process water (81). 

 

ANTIMICROBIAL ACTIVITY OF EW AGAINST MICROORGANISMS ON 

FOOD PRODUCTS 
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The antimicrobial activities of AEW or NEW on various food products are shown 

in Table 4 and 5. Moreover, the effects of sequential BEW and AEW treatment are 

summarized in Table 6. 

Vegetables and fruits. On strawberries, AEW treatment for 10 min achieved a 

reduction of naturally present aerobic bacteria, coliforms, and fungi by 1.6, 2.4, and 

1.6 log CFU/strawberry to non-detectable levels, respectively (56). Similar reductions 

were also obtained on cucumbers (Table 4). The combined treatment with BEW and 

AEW yielded higher reductions for cucumbers, but not for strawberries (Table 6). 

The latter is in agreement with former studies (56, 69, 112). Probably due to the 

complex surface structure of strawberries, longer exposure times were required to 

allow sanitizers to infiltrate the surface. On tomatoes, AEW reduced E. coli O157:H7, 

L. monocytogenes, and Salmonella Enteritidis by about 7.5 log CFU/tomato (11). 

After application of AEW containing only 3.6 ppm of active chlorine on lettuce, 

Ongeng et al. (81) observed reductions of Enterobacteriaceae, lactic acid bacteria, and 

psychrotrophs by 2.6, 1.9, and 3.3 log CFU/g, respectively. Park et al. (86) reported 

similar reductions of E. coli O157:H7 (2.8 log CFU/leaf) and L. monocytogenes (2.4 log 

CFU/leaf) after AEW treatment (Table 4). Recently, AEW was shown to be as 

effective as chlorine in reducing pathogens (E. coli O157:H7, Salmonella, L. 

monocytogenes) on leafy greens (101). Thus AEW may be used as a suitable alternative 

to chlorine for the treatment of leafy greens. 

In further study (57), the effects of temperature and BEW pre-treatment on the 

efficiency of AEW against E. coli O157:H7 and Salmonella on lettuce were examined 

(Table 4). Reductions obtained by AEW at 4°C or room temperature within 1 min 

were not higher than to those obtained by chlorinated water or distilled water. Rise 

of temperature (50°C) and/or exposure time (5 min) yielded higher reductions. BEW 

pre-treatment at room temperature for 5 min increased the reductions by about 0.5 
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orders of magnitude (Table 6). Highest reductions were obtained at a pre-treatment 

temperature of 50°C, regardless of duration or temperature of the AEW treatment 

(57). Moreover, Yang et al. (109) examined the effects of BEW and AEW (30°C, 5 min, 

pH 9 or 4; ORP -750 or 1150 mV; ACC 22 to 198 ppm) on biofilms attached to lettuce 

leafs. E. coli O157:H7, L. monocytogenes, and Salmonella Typhimurium were thereby 

reduced by about two orders of magnitude. 

By the use of NEW for 5 min, E. coli O157:H7, L. monocytogenes, and Salmonella 

Typhimurium on lettuce were reduced by 3.0, 4.0, and 2.5 log CFU/g, respectively 

(109). Otherwise, NEW reduced L. monocytogenes and Salmonella Enteritidis on 

tomatoes by 4.3 to 4.9 log CFU/cm2 (20). Moreover, NEW reduced aerobic bacteria 

on diced potatoes, radish shreds, carrot slices, and spinach leaves by 0.1 to 2.3 log 

CFU/g (Table 4). Thereby, rinsing was generally more effective than dipping (39). 

Fish and seafood. On carp skin treated for 15 min with AEW, total microbial 

counts were reduced by 2.8 log CFU/cm2 (Table 5). Pre-treatment with BEW yielded 

comparable results (Table 6). On tilapia skin immersed in AEW, higher reductions 

were obtained for Vibrio parahaemolyticus than for E. coli O157:H7 (37). On carp filets 

treated for 15 min with AEW, total microbial counts were reduced by 2.0 log CFU/g 

(72). The use of AEW on tuna filets yielded reductions of the natural microflora by 

about one order of magnitude (Table 5). Depending on exposure time and 

temperature, Ozer and Demirci (83) reported reductions of E. coli O157:H7 and L. 

monocytogenes on salmon filets ranging from 0.4 to 1.1 log CFU/g. 

To investigate the antimicrobial effect of AEW on oysters, inoculated oysters were 

placed into tanks containing AEW (ACC of 30 ppm) and the AEW salt concentration 

was set at 1% (90). After four hours of exposition, Vibrio parahaemolyticus and Vibrio 

vulnificus were reduced by about one order of magnitude (Table 5). Further 

exposition did not increase the reductions. Probably due to the unfavorable growth 
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environment, oysters stopped water filtering and thereby hampered the entry of 

AEW (90). 

Carcasses, raw meat, and ready-to-eat meat. Fabrizio et al. (27) compared the 

effect of AEW solutions for immersion and spray washing of chicken carcasses. 

Immersion of carcasses in AEW (4°C, 45 min) reduced aerobic bacteria, total 

coliforms, E. coli, and Salmonella Typhimurium by 0.8 to 1.3 log CFU/ml carcass 

rinsate (Table 5). Otherwise, reductions obtained by spray washing (15 s) with AEW 

and distilled water did not differ significantly. Spray washing with BEW followed by 

immersion in AEW (Table 6) yielded higher reductions (1.5 to 2.4 log CFU/ml). 

Spray treatment with BEW was as effective in removing fecal material as the 

commonly used trisodium phosphate (44). Moreover, the results of Hinton et al. (35) 

suggested that AEW treatment extended the shelf life of refrigerated poultry. 

Kim et al. (44) investigated the effectiveness of AEW to reduce Campylobacter 

jejuni on chicken carcasses (Table 5). Reductions of 2.3 log CFU/g were obtained by 

immersion, but additional pre-spraying did not improve the efficiency. Spray 

treatment alone reduced Campylobacter jejuni by 1.1 log CFU/g. However, all 

treatments failed to completely eliminate Campylobacter. Furthermore, AEW reduced 

Campylobacter jejuni on fresh chicken wings by about three orders of magnitude and 

was thereby as effective as chlorine water (84). Gellynck et al., (30) analyzed the 

economics of reducing Campylobacter at different levels within the poultry meat chain 

(farm, processing plant, consumer). These authors found that the decontamination of 

carcasses with AEW in the processing plant was the most efficient (cost-benefit ratio) 

among the evaluated measures. 

Fabrizio and Cutter (25) investigated the effectiveness of AEW spray treatment on 

pork bellies in order to reduce total microbial counts, Campylobacter coli, coliforms, E. 

coli, L. monocytogenes, and Salmonella Typhimurium (Table 5). Only the effect of AEW 
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against Campylobacter differed significantly from that obtained for distilled water (1.8 

log CFU/cm2). On frankfurters and ham, spray treatment with AEW or a combined 

spray treatment with BEW and AEW failed to reduce L. monocytogenes by more than 

one order of magnitude (Table 5 and 6). Other tested sanitizing agents did also not 

achieve higher reductions (26). This might be due to the short contact times and the 

binding of chemicals by proteins. By dipping frankfurters in AEW for 15 min, L. 

monocytogenes were reduced by 1.5 log CFU/g (Table 5). 

Eggs. Electrostatic spraying of shell eggs with AEW (hourly for one day) reduced 

E. coli, S. aureus, and Salmonella Typhimurium by three to six orders of magnitude 

(Table 5), whereas L. monocytogenes were reduced by 1.0 to 4.0 log CFU/egg (92). In 

another study, immersion of eggs in AEW for 5 min with agitation (100 rpm) reduced 

L. monocytogenes and Salmonella Enteritidis by 3.7 and 2.3 log CFU/egg, respectively 

(88). Pre-wash with BEW yielded reductions of !3.0 log CFU/egg within shorter 

exposure times (Table 6). 

Application of AEW as ice. AEW may be applied as solution or ice. Frozen AEW 

was tested on lettuce and pacific saury (45, 51). The main antimicrobial effect of 

frozen AEW was attributed to the emitted Cl2 (36, 50). Cl2 emission in AEW-ice was 

proportional to the ACC before freezing (51). Because the boiling point of Cl2 is -

34°C, AEW-ice should be prepared at -40°C to prevent early chlorine loss. 

On iceberg lettuce placed into containers with AEW-ice (pH 2.6), reductions of L. 

monocytogenes accounted for about 1.5 log CFU/g and no significant differences were 

found at ACCs of 40 and 70 ppm (51). The highest reductions of E. coli O157:H7 (2.5 

log CFU/g) were obtained with AEW-ice containing 240 ppm of active chlorine. 

However, this ACC caused physiological disorder resembling leaf burn. AEW-ice 

with ACCs of 40 and 70 ppm did not affect the color of lettuce and still reduced E. 
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coli O157:H7 by one order of magnitude. To achieve reductions of both pathogens by 

at least 1.5 log CFU/g, ten times the weight of AEW-ice relative to the weight of 

lettuce was required. The best results were obtained after an exposure time of 120 

min. Extension of this time did not lead to further reductions. AEW-ice may serve 

simultaneously for refrigeration and control of pathogens (51). 

In another study, AEW-ice (pH 5.1; ACC of 47 ppm) was used on pacific saury to 

extend shelf life, to suppress lipid oxidation and the formation of volatile basic 

nitrogen, and to retard the accumulation of alkaline compounds (45). In this study, 

the storage of saury in tap water ice and AEW-ice were compared. Hence the growth 

of aerobic bacteria and psychrotrophs was slower and growth of coliforms did not 

occur when saury was stored using AEW-ice. 

 

IMPACT OF EW APPLICATION FOR THE FOOD INDUSTRY 

AEW treatment may be used as a method for inactivating food-borne pathogens 

and reducing microbial contamination on processing surfaces and various food 

products (e.g. vegetables and fruits). However, microbial reductions on surfaces and 

especially food products were less distinct than those obtained in suspension. In 

particular, the adverse effect of organic mater on the antimicrobial activity of AEW 

must be considered for the use of this technology in the food industry.  

On some food commodities, treatment with BEW followed by AEW showed 

stronger activity than treatment with AEW only. Interestingly, sequential BEW and 

AEW treatment also yielded highest reductions in L. monocytogenes biofilms on 

stainless steel, even in the presence of organic matter. Hence combination of AEW 

with other preservative agents should be further evaluated.  

The EW technology deserves consideration in discussing possibilities for 

sanitizing of equipment or for decontamination of certain food products. 
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Nevertheless, decontamination treatments for food products should always be seen 

as a part of an integral food safety system. In particular, such treatments cannot 

replace strict adherence to good manufacturing and hygiene practices on all stages of 

the food production process. 
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FIGURE LEGEND 

 

FIGURE 1. Schematics of electrolyzed water generation. The basic chemical reactions 

at the anode can be summarized as follows: 2H2O ! 4H+ + O2" + 4e-; 2NaCl ! Cl2" + 

2e- + 2Na+; Cl2 + H2O ! HCl + HOCl. At the cathode, the main chemical reactions 

comprise: 2H2O + 2e- ! 2OH- + H2"; 2NaCl + 2OH- ! 2NaOH + Cl-. 
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TABLE 1. Antimicrobial activity of AEW and NEW against microorganisms in suspension 

 

Microorganisms EW 
Reduction   

(log CFU ml-1) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Aeromonas liquefaciens AEW >7.0 naa 0.5 2.8 1125 43 108 

Alcaligenes faecalis AEW >7.0 na 0.5 2.8 1125 43 108 

Bacillus spp. AEW 2.3 25 1 2.2 na 40 72 

Bacillus cereus AEW 8.0 24 0.5 2.5 1123 10 40 
Spores AEW 3.5 24 2 2.5 1123 10 40 
Cells and spores AEW >6.0 na 5 2.8 1125 43 108 

Bacillus subtilis AEW >6.0 na 5 2.2 1153 49 47 

Campylobacter jejuni AEW >7.0 23 0.2 2.6 1082 50 84 

Citrobacter freundii AEW >7.0 na 0.5 2.8 1125 43 108 

Enterobacter aerogenes AEW >9.0 23 0.5 2.8 1163 25 87 

Enterobacteriaceae  AEW >6.0 na 1 2.2 na 40 72 

Enterococcus faecium AEW >8.0 na 0.5 2.8 1125 43 108 
 AEW 8.0 22 15 3.0 1100 40 28 
 NEW >6.0 25 10 6.5 850 20 32 

Escherichia coli AEW >8.0 na 0.5 2.8 1125 43 108 
 NEW >6.0 23 5 8.2 745 93 20 

 NEW >6.0 25 10 6.5 850 20 32 

Escherichia coli O157:H7 AEW 8.9 24 0.2 2.6 1160 56 40 
 AEW >8.0 23 5 2.4 1155 82 106 
 AEW 8.0 35 2 2.4 1155 82 106 
 AEW 8.0 45 1 2.4 1155 82 106 
 AEW >7.0 22 1 2.5 1130 45 86 
 NEW >7.0 23 5 8.0 >700 60 21 

Flavobacter spp. AEW >8.0 na 0.5 2.8 1125 43 108 
 AEW >6.0 na 1 2.2 na 40 72 
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TABLE 1. Continued 

 

Microorganisms EW 
Reduction   

(log CFU ml-1) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Listeria monocytogenes AEW 9.2 24 0.2 2.6 1160 56 40 
 AEW >8.0 23 0.1 2.5 1150 50 67 
 AEW >7.0 22 1 2.5 1130 45 86 
 AEW >7.0 4 10 2.6 1158 48 106 
 AEW >7.0 23 5 2.6 1158 48 106 
 AEW >7.0 35 2 2.6 1158 48 106 
 AEW >7.0 45 1 2.6 1158 48 106 
 AEW >6.0 na 1 2.4 1170 44 8 
 NEW >7.0 23 5 8.0 >700 60 21 
 NEW >6.0 25 10 6.5 850 20 32 

Mycobacterium avium ssp. avium AEW 8.0 22 15 3.0 1100 40 28 

Proteus mirabilis AEW 8.0 22 5 3.0 1100 40 28 

Proteus vulgaris AEW >8.0 na 0.5 2.8 1125 43 108 

Pseudomonas aeruginosa AEW >8.0 na 0.5 2.8 1125 43 108 
 AEW 8.0 22 30 3 1100 40 28 
 AEW >6.0 na 5 2.2 1153 49 47 

 NEW >7.0 23 5 8.0 >700 60 21 

Salmonella Enteritidis AEW >7.0 23 5 2.4 1151 82 106 
 NEW >6.0 23 5 8.2 745 93 20 

Salmonella Typhimurium NEW >6.0 25 10 6.5 850 20 32 

Staphylococcus aureus AEW >9.0 23 0.5 2.8 1163 25 87 
 AEW >8.0 na 0.5 2.8 1125 43 108 
 AEW 8.0 22 5 3.0 1100 40 28 
 AEW 4.1 23 0.5 3.2 1116 10 84 
 NEW >7.0 23 5 8.0 >700 60 21 
 NEW >6.0 25 10 6.5 850 20 32 
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TABLE 1. Continued 
 

 

 

 

 

 

a na, not available.  

Microorganisms EW 
Reduction   

(log CFU ml-1) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Vibrio parahaemolyticus AEW >6.6 na 0.3 3.2 1104 10 90 

Vibrio vulnificus AEW >6.6 na 0.3 3.2 1104 10 90 

Aspergillus parasiticus spores AEW 3.0 na 15 2.5 1164 20 to 30 103 

Candida albicans AEW 8.0 22 5 3.0 1100 40 28 

Penicilium expansum spores AEW 4.0 na 5 3.5 1027 18 79 
 AEW 4.8 na 0.5 3.1 1133 60 80 
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TABLE 2. Antimicrobial activity of AEW and NEW on surfaces and utensils 

 
 

Material / surface Microorganisms EW Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Ceramic tile Aerobic bacteria AEW  2.4/cm2 naa 1 2.6 1156 55 37, 38 

 Enterobacter aerogenes AEW  2.2/cm2 23 5 2.6 1181 53 87 

 Staphylococcus aureus AEW  1.8/cm2 23 5 2.6 1181 53 87 

 Vibrio parahaemolyticus AEW  >5.0/cm2 na 0.8 2.7 1151 40 18 

Ceramic tile chips Listeria monocytogenes AEW  4.2/25 cm2 na 5 2.5 1150 50 67 

Cutting boards          

Bamboo Vibrio parahaemolyticus AEW  3.5/cm2 na 5 2.7 1151 40 18 

Plastic Escherichia coli NEW  5.0/50 cm2 na 1 7.8 775 64 22 

 Escherichia coli O157:H7 AEW  8.0/100 cm2 35 
45 
55 

20 
10 
5 

2.6 
2.5 
2.3 

1162 
1157 
1147 

90 
93 
45 

107 
107 
107 

 Listeria monocytogenes NEW  5.0/50 cm2 na 1 7.8 775 64 22 
  AEW  5.3/100 cm2 35 10 2.4 1156 66 107 

 Pseudomonas aeruginosa NEW  5.0/50 cm2 na 1 7.8 775 64 22 

 Staphylococcus aureus NEW  5.0/50 cm2 na 1 7.8 775 64 22 

 Vibrio parahaemolyticus AEW  >5.0/cm2 na 1 2.7 1151 40 18 

Wood Escherichia coli NEW  4.0/50 cm2 na 5 7.8 775 64 22 

 Listeria monocytogenes NEW  4.0/50 cm2 na 5 7.8 775 64 22 

 Pseudomonas aeruginosa NEW  4.0/50 cm2 na 5 7.8 775 64 22 

 Staphylococcus aureus NEW  4.0/50 cm2 na 5 7.8 775 64 22 

 Vibrio parahaemolyticus AEW  5.7/cm2 na 5 2.7 1151 40 18 
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TABLE 2. Continued 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a na, not available 

Material / surface Microorganisms EW Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Glass Enterobacter aerogenes AEW  2.2/cm2 23 5 2.6 1181 53 87 

 Escherichia coli O157:H7 NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 
 Listeria monocytogenes NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 
 Pseudomonas aeruginosa NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 
 Staphylococcus aureus NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 
  AEW  1.7/cm2 23 5 2.6 1181 53 87 

Gloves Listeria monocytogenes AEW  4.5 to 5.5/cm2 23 5 2.6 1125 40 68 

Stainless steel Enterobacter aerogenes AEW  2.4/cm2 23 5 2.6 1181 53 87 

 Escherichia coli O157:H7 NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 

 Listeria monocytogenes AEW  3.7/25 cm2 na 5 2.5 1150 50 67 
  NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 
 Listeria monocytogenes         
 Biofilms AEW  4.3/10 cm2 24 0.5 2.4 1163 47 7 
 Biofilms AEW  5.2/10 cm2 24 2 2.4 1163 47 7 
 Biofilms AEW  5.8/83 cm2 23 0.2 2.6 1160 56 42 
 Biofilms AEW  >10/83 cm2 23 5 2.6 1160 56 42 

 Pseudomonas aeruginosa NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 

 Staphylococcus aureus AEW  1.8/cm2 23 5 2.6 1181 53 87 
  NEW  >6.0/50 cm2 23 1 8.0 >700 60 21 

 Vibrio parahaemolyticus AEW  >5.0/cm2 na 0.5 2.7 1151 40 18 

Vitreous china Enterobacter aerogenes AEW  2.3/cm2 23 5 2.6 1181 53 87 

 Staphylococcus aureus AEW  1.9/cm2 23 5 2.6 1181 53 87 



   JFP-07-632 

34 

TABLE 3. Antimicrobial activity of AEW against Listeria monocytogenes in the presence of organic matter/food residues 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

a na, not available; 
 

Material Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Ceramic tiles with crab meat residues  2.3/25cm2 naa 5 2.5 1150 50 67 

Floor tiles with crab meat residues  1.5/25cm2 na 5 2.5 1150 50 67 

Processing gloves with cooked shrimp meat 
diluted with distilled water 

1.6 to 3.8/16cm2 24 5 2.6 1125 40 68 

Stainless steel (biofilm), chicken serum added 
to the treatment solution (5 ml/l) 

 2.7/10cm2 24 0.5 2.3 1166 44 8 

Stainless steel (biofilm), chicken serum added 
to the treatment solution (7.5 ml/l) 

 2.0/10cm2 24 0.5 2.3 1166 44 8 

Stainless steel (biofilm), chicken serum added 
to the treatment solution (7.5 ml/l) 

 >4.0/cm2 24 1 2.3 1166 44 8 

Stainless steel with crab meat residues  2.3/25cm2 na 5 2.5 1150 50 67 
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TABLE 4. Antimicrobial activity of AEW and NEW on fruits and vegetables 

 

Food products Microorganisms EW Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Carrots (slices) Aerobic bacteria NEW  1.0/g 23 3 6.8 na 20 39 

Cucumbers Aerobic bacteria AEW  1.5/cucumber naa 10 2.6 1130 32.1 56 

 Coliforms AEW  1.7/cucumber na 10 2.6 1130 32.1 56 

 Fungi AEW  1.7/cucumber na 10 2.6 1130 32.1 56 

Lettuce Aerobic bacteria AEW  2.0/g na 5 2.6 1140 30 55 

 Enterobacteriaceae na  2.6/g na 5 na na 3.6 81 

 Enterococcus faecalis NEW  2.6/ml 25 10 6.5 850 50 32 

 Escherichia coli NEW  0.2/ml 25 10 6.5 850 50 32 

 Escherichia coli O157:H7 AEW  2.4/leaf 22 3 2.5 1130 45 86 
  NEW  3.0/g 30 5 7 >750 22 to 198 109 

 AEW  0.6 to 0.9/g 4 or 20 1 2.6 na 40 57 
 AEW  1.3 to 1.4/g 20 5 2.6 na 40 57 
 AEW  2.7 to 3.0/g 50 1 2.6 na 40 57 
 

Escherichia coli O157:H7 
and Salmonellab

 

AEW  4.0/g 50 5 2.6 na 40 57 

 Lactic acid bacteria na  1.9/g na 5 na na 3.6 81 

 Listeria monocytogenes AEW  2.8/leaf 22 3 2.5 1130 45 86 
  NEW  4.0/g 30 5 7 >750 22 to 198 109 
  NEW  2.5/ml 25 10 6.5 850  50 32 

 Psychotrophs na  3.3/g na 5 na na 3.6 81 

 Salmonella Typhimurium NEW  2.5/g 30 5 7 >750 22 to 198 109 
  NEW  2.9/ml 25 10 6.5 850 50 32 

 Staphylococcus aureus NEW  2.8/ml 25 10 6.5 850 50 32 

Potatoes (diced) Aerobic bacteria NEW  0.1/g 23 4 6.8 na 20 39 

Radish (shreds) Aerobic bacteria NEW  0.5/g 23 3 6.8 na 20 39 
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TABLE 4. Continued 

a na, not available; b Salmonella Typhimurium and Salmonella Enteritidis 
 

Food products Microorganisms EW Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Spinach (leaves) Aerobic bacteria NEW  2.3/g 23 3 6.8 na 20 39 

 Enterococcus faecalis NEW  3.5/ml 25 10 6.5 850 50 32 

 Escherichia coli NEW  2.6/ml 25 10 6.5 850 50 32 

 Listeria monocytogenes NEW  >4.9/ml 25 10 6.5 850 50 32 

 Salmonella Typhimurium NEW  2.3/ml 25 10 6.5 850 50 32 

 Staphylococcus aureus NEW  >4.3/ml 25 10 6.5 850 50 32 

Strawberries Aerobic bacteria AEW 1.6/strawberry na 10 2.6 1130 32.1 56 

 Coliforms AEW 2.4/strawberry na 10 2.6 1130 32.1 56 

 Fungi AEW 1.6/strawberry na 10 2.6 1130 32.1 56 

Tomatoes Escherichia coli NEW  5.0/cm2 23 1 8.2 745 93 20 

 Escherichia coli O157:H7 AEW  7.6/tomato 23 na 2.6 1140 30 11 
  NEW  4.9/cm2 23 1 8.2 745 93 20 

 Listeria monocytogenes AEW  7.5/tomato 23 na 2.6 1140 30 11 
  NEW  4.7/cm2 23 1 8.2 745 93 20 

 Salmonella Enteritidis AEW  7.4/tomato 23 na 2.6 1140 30 11 
  NEW  4.3/cm2 23 1 8.2 745 93 20 
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TABLE 5. Antimicrobial activity of AEW and NEW on various food products 

 

Food products Microorganisms EW Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Fish and seafood: 
         

Carp (skin) Aerobic bacteria AEW  2.8/cm2 25 15 2.2 1137 41 72 

Carp (filets) Aerobic bacteria AEW  2.0/g 25 15 2.2 1137 41 72 

Oysters Vibrio parahaemolyticus AEW  1.1/g naa 240 2.8 1131 30 90 
 Vibrio vulnificus AEW  1.1/g na 240 2.8 1131 30 90 

Tilapia (skin) Escherichia coli O157:H7 AEW  0.6 to 0.8/cm2 23 1 to 10 2.5 1159 120 37 
 Vibrio parahaemolyticus AEW  2.6/cm2 23 10 2.5 1159 120 37 

Tuna (filets) Aerobic bacteria AEW  1.0/g na na na na 50 38 
 Aerobic bacteria AEW  1.0/g na na na na na 111 

Salmon (filets) Escherichia coli O157:H7 AEW  0.5/g 22 2 2.6 1150 76-90 83 
  AEW  1.1/g 35 64 2.6 1150 76-90 83 
 Listeria monocytogenes AEW  0.4/g 22 2 2.6 1150 76-90 83 

Carcasses, raw meat and ready-to-eat meat: 
       

Chicken carcasses Aerobic bacteria AEW  1.3/ml rinse 4 45 2.6 1150 50 27 
 Campylobacter jejuni AEW  2.3/g na 40 2.5 1140 47 44 
 Coliforms AEW  1.1/ml rinse 4 45 2.6 1150 50 27 
 Escherichia coli AEW  1.1/ml rinse 4 45 2.6 1150 50 27 
 Salmonella Typhimurium AEW  0.8/ml rinse 4 45 2.6 1150 50 27 

Chicken wings Campylobacter jejuni AEW  3.0/g 4 or 23 10 or 23 2.6 1082 51.6 84 

Frankfurters, ham Listeria monocytogenes AEW  <1.0/g 25 0.3 2.3 1130 36 26 
Frankfurters Listeria monocytogenes AEW  1.5/g 25 15 2.3 1130 36 26 
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TABLE 5. Continued 

 

 

 

 

 

 

 

 

 

 

a na, not available 
 

Food products Microorganisms EW Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH 
ORP 
(mV) 

Active chlorine 
(ppm) 

Reference 

Pork Aerobic bacteria AEW  1.2/cm2 na 0.3 2.8 1144 68 25 
 Campylobacter coli AEW  1.8/cm2 na 0.3 2.8 1144 68 25 
 Coliforms AEW  1.2/cm2 na 0.3 2.8 1144 68 25 
 Escherichia coli  AEW  1.1/cm2 na 0.3 2.8 1144 68 25 
 Listeria monocytogenes AEW  1.2/cm2 na 0.3 2.8 1144 68 25 
 Salmonella Typhimurium AEW  1.7/cm2 na 0.3 2.8 1144 68 25 

Shell eggs:          

 Escherichia coli AEW  4 to 6/egg na hourly 0.3 2.1 1150 8 92 
 Listeria monocytogenes AEW  3.7/egg na 5 2.7 1089 16 88 
  AEW  1 to 4/egg na hourly 0.3 2.1 1150 8 92 
 Salmonella Enteritidis AEW  2.3/egg na 5 2.7 1089 16 88 
 Salmonella Typhimurium AEW  4 to 6/egg na hourly 0.3 2.1 1150 8 92 
 Staphylococcus aureus AEW  3 to 6/egg na hourly 0.3 2.1 1150 8 92 
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TABLE 6. Antimicrobial activity of sequential BEW and AEW treatment on various food products 

a na, not available; b Salmonella Typhimurium and Salmonella Enteritidis 

Product Microorganisms Reduction (log) 
Temperature 

(°C) 
Exposure 
time (min) 

pH ORP (mV) 
Active chlorine 

(ppm) 
Reference 

Chicken  Aerobic bacteria  2.4/ml rinsate BEW: naa na BEW: 11.6 BEW: -795 BEW: 0 27 
carcasses Coliforms  1.6/ml rinsate AEW: 4  AEW: 2.6 AEW 1150 AEW: 50  
 Escherichia coli  1.5/ml rinsate       
 Salmonella Typhimurium  2.1/ml rinsate       

Carp (skin) Aerobic bacteria  2.6/cm2 BEW: 25 
AEW: 25 

BEW: 15 
AEW: 15 

BEW: 11.6 
AEW: 2.2 

BEW: -885 
AEW: 1137 

BEW: 0.9 
AEW: 41 

72 

Cucumbers Aerobic bacteria  2.0/cucumber na BEW: 5 BEW: 11.3 BEW: -870 BEW: na 56 
 Coliformes  1.7/cucumber  AEW: 5 AEW: 2.6 AEW: 1130 AEW: 32  
 Fungi  2.0/cucumber       

Frankfurters Listeria monocytogenes  <1.0/g BEW: 25 
AEW: 25 

BEW: 0.3 
AEW: 0.3 

BEW: na 
AEW: 2.3 

BEW: na 
AEW: 1130 

BEW: na 
AEW: 36 

26 

Lettuce Aerobic bacteria  2.0/g na BEW: 1 
AEW: 1 

BEW: 11.4 
AEW: 2.6 

BEW: -870 
AEW: 1140 

BEW: na 
AEW: 30 

55 

 Escherichia coli O157:H7  1.8/g BEW: 20 BEW: 5 BEW: 11.4 na BEW: 0 57 
 and Salmonellab    AEW: 20 AEW: 5 AEW: 2.6  AEW: 40  
   2.7/g BEW: 50 BEW: 1 BEW: 11.4 na BEW: 0 57 
    AEW: 4 AEW: 1/5 AEW: 2.6  AEW: 40  
   4.0/g BEW: 50 BEW: 5 BEW: 11.4 na BEW: 0 57 
    AEW: 4 AEW: 1/5 AEW: 2.6 na AEW: 40  

Shell eggs Listeria monocytogenes  3.0/egg na BEW: 1 BEW: 11.2 BEW: -940 BEW: 0 88 
 Salmonella Enteritidis  3.7/egg na AEW: 1 AEW: 2.7 AEW: 1089 AEW: 16  

Strawberries Aerobic bacteria 1.0/strawberry na BEW: 5 BEW: 11.3 BEW: -870 BEW: na 56 
 Coliformes 2.4/strawberry  AEW: 5 AEW: 2.6 AEW: 1130 AEW: 32  
 Fungi 1.0/strawberry       



  JFP-07-632; Figure 1 

 

 

 

 

 

 

 

 

 


